Variety refers to the many sources and types of data both structured and unstructured. We used to store data from sources like spreadsheets and databases. Now data comes in the form of emails, photos, videos, monitoring devices, PDFs, audio, etc. This variety of unstructured data creates problems for storage, mining and analyzing data. Jeff Veis, VP Solutions at HP Autonomy presented how HP is helping organizations deal with big challenges including data variety.
Volume – Scale of data
Big data implies enormous volumes of data. It used to be employees created data. Now that data is generated by machines, networks and human interaction on systems like social media the volume of data to be analyzed is massive. Yet, Inderpal states that the volume of data is not as much the problem as other V’s like veracity.
Velocity – Analysis of streaming data
Big Data Velocity deals with the pace at which data flows in from sources like business processes, machines, networks and human interaction with things like social media sites, mobile devices, etc. The flow of data is massive and continuous. This real-time data can help researchers and businesses make valuable decisions that provide strategic competitive advantages and ROI if you are able to handle the velocity. Inderpal suggest that sampling data can help deal with issues like volume and velocity.